

Velos eResearch Design Document

Velos Inc.
2201 Walnut Avenue, Suite 208

Fremont, CA 94538
Phone: (510) 739 4010, FAX: (510) 739 4018

Copyright © Velos Inc. 2000. This document is copyright and contains information, which is the property of
VELOS. No part of this document may be copied or stored in a retrieval system without the written permission of
VELOS.

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

Contents

1. ABOUT VELOS ERESEARCH ..4

2. HIGH LEVEL DESIGN (SYSTEM ARCHITECTURE) ...4

2.1. APPLICATION ARCHITECTURE ...4
2.1.1. Presentation layer ...5
2.1.2. Application layer ..5
2.1.3. The Service layer ..5
2.1.4. The Business (domain) layer...6
2.1.5. The Persistence layer ...6
2.1.6. Other Java Beans ...6
2.1.7. Data Access Objects ..6

3. HIGH-LEVEL DESIGN CHOICES..7

4. MODULAR DESIGN (LOW LEVEL DESIGN) ...10

4.1. STUDY BEAN DESIGN ..10
4.1.1. Table Structure ..10
4.1.2. Presentation Layer ..12
4.1.3. Application Layer...12
4.1.4. Service Layer ...14
4.1.5. Business layer ...15
4.1.6. Helper Classes ..16

4.2. DEPLOYMENT DESCRIPTORS ..17
4.3. JAR FILES ...18

5. MAIN MODULES..19

5.1. CREATING AN ACCOUNT..19
5.2. LOGIN...20
5.3. ORGANIZATION ..21
5.4. GROUP ...22
5.5. USER..23
5.6. PERSONALIZE ACCOUNT..24
5.7. EVENT LIBRARY ...25
5.8. PROTOCOL CALENDAR LIBRARY ...26
5.9. STUDY ..28
5.10. PATIENT ...29

5.10.1. Patient Enrollment...30
5.10.2. Patient Schedule ...31

5.11. ALERTS AND NOTIFICATIONS...32
5.11.1. Alerts ...32
5.11.2. Notifications..32
5.11.3. Options..32
5.11.4. Adverse Events ...33

5.12. PATIENT CRFS AND OTHER FORMS ...34
5.13. BUDGET ...35
5.14. MILESTONES ..37
5.15. REPORTS ...38

5.15.1. Reports Design ..38
5.15.2. Advantage ..39

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.15.3. Reports available in Velos eResearch ...39

6. SECURITY IN VELOS ERESEARCH ...41

7. THE VELOS ERESEARCH MAILER ..43

7.1. HOW IT WORKS ..43
7.2. SETTING UP THE ERESEARCH MAILER ..44

8. AUDIT TRAIL IN VELOS ERESEARCH ..45

8.1. DESIGN ..45
8.2. TABLES ..45
8.3. TRIGGERS ..46
8.4. PACKAGE AND STORED PROCEDURES ...46
8.5. HOW THE AUDIT TRAIL WORKS ..46
8.6. AUDIT REPORTS ..47

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

1. About Velos eResearch

Velos eResearch is a comprehensive clinical research management solution designed specifically

for investigators and their research teams. It is a web-based application that streamlines and

accelerates the research process and helps produce quality study results. Answering the need for a

connectivity and data aggregating solution in the field of clinical research, Velos eResearch offers a

cost-effective means to bring together all of the participants in the research process. In a secure

environment, it provides a platform for collecting and sharing data. This revolutionary new way of

managing clinical research improves the efficiency of clinical research, both internally and with trial

sponsors. All research-related information is centralized and can be accessed from anywhere,

anytime. Password protected, the account is accessible only to authorized personnel. It is easy to

use, reliable and completely secure.

2. High Level Design (System Architecture)

The High Level Design is the representation (model) of the software system. This section covers the

Architecture of the Velos eResearch application.

2.1. Application Architecture

The Velos eResearch application architecture, (illustrated in Figure 1 below) is a Java 2 platform,

Enterprise Edition (J2EE) Layered Architecture. Layered by definition, J2EE is a component-based

architecture that separates the presentation content from the underlying application. Layering

partitions the functionality of an application into separate layers that are stacked vertically. In

layering, each layer interacts only with the layer directly underneath.

These layers can be broadly categorized as:

• The Presentation layer

• The Application layer

• The Service layer

• The Domain layer

• The Persistence layer

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

Figure 1: Velos eResearch Application Architecture

2.1.1. Presentation layer

The presentation layer consists of objects defined to accept user input and to display application

outputs. The presentation technology used in Velos eResearch is HTML/JSP. This layer interacts

with Application Layer only for sending requests and receiving outputs.

2.1.2. Application layer

The Application layer comprises Controller JSPs and Client Java Beans (Refer to the Architecture

diagram in Figure 1). This simplifies the JSP by abstracting out any complex remote method

invocation and delegating that responsibility to the JavaBeans. Thus the JSP now concerns itself

only with simple logic. It then routes control to various other pages depending on that logic.

2.1.3. The Service layer

The service layer contains controllers and, in the J2EE layer architecture, Session Beans represent

these controllers. The Velos eResearch application uses the Session Facade design pattern, in

which the session beans always mask the entity beans. Session beans represent use cases and can

therefore delimit transactional boundaries. This object positioning leads to a service-based

architecture where the session beans, which represent workflow, control entity beans. Session

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

beans are therefore an extension of the client on the server-side. Session beans come in two flavors:

stateless session beans and stateful session beans. The Velos eResearch application has stateless

session beans.

2.1.4. The Business (domain) layer

The business layer of Velos eResearch application contains shared business objects, typically

shared by multiple clients. The Velos eResearch application implements domain objects as Entity

Beans offering benefits in distribution, transaction capabilities and persistence. Entity Beans

represent a row in the database as a Java object (an entity bean) and allows manipulating of that

object with public accessor methods.

Entity beans come in two flavors: container manager persistent (CMP) entity beans and bean-

managed persistent (BMP) entity beans. In CMP, the basic CRUD (create, read, update, and delete)

database operations are delegated to the container. In BMP, the responsibility for writing the SQL

code for the database operations is left to the developer. The Velos eResearch application uses

CMP entity beans.

2.1.5. The Persistence layer

The Velos eResearch database (Oracle 9i) comprises this layer. A considerable amount of Business

Logic is stored in the database in the form of packages, stored procedures, functions and triggers.

2.1.6. Other Java Beans

Some Java Beans embodying generic logic are used in both the Service and the Domain layers. A

simple example of a generic Java Bean is a ‘FileUpload’ bean that can be designed to upload files

from the user’s system to the Velos eResearch server.

2.1.7. Data Access Objects

The Domain layer includes a few generic Data Access Objects. Stateless session beans interact with

these objects to return data for simple queries. These Data Access Objects are simple Java Beans

that reduce the load on the Container by eliminating unnecessary Entity Beans. In the Velos

eResearch application, Data Access Objects are designed to handle requests for a large number or

rows, execute Stored Procedures or database functions and to display Read-Only data.

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

3. High-Level Design Choices

The Velos eResearch application reflects several design choices that have a global impact on

application behavior and performance. To sum up a few:

• Web-tier business logic vs. enterprise beans components. Many applications implement all

of their business logic in Web-tier classes. More complex and larger-scale applications often

choose enterprise beans technology to provide scalability, reliability, a component-based

development model and common horizontal services such as persistence, asynchronous

communication and declarative transaction and security control. The Velos eResearch application

uses enterprise beans because of these benefits.

• Declarative vs. programmatic transaction control. J2EE transactions can be controlled

programmatically in code or declaratively in deployment descriptors. Declarative transactions are

easier to create, manage and are more flexible, while programmatic transactions offer a higher

degree of control. The Velos eResearch application uses declarative transaction control when

updating data in the EJB tier.

• Session Facade vs. directly accessing the data logic. The Session Facade pattern applies the

benefits of the traditional Facade pattern to EJB by completely hiding the object model on the

server from the client/presentation layer by having a layer of session beans on the entity beans /

other business objects. It not only provides performance benefits, but also suggests a standard

architecture for EJB systems-partitioning of the J2EE applications in such a way that the

boundary between the client and server is separated by a layer of session beans, whose methods

map to (and contain the business logic of) all the use cases in the application. It enforces a highly

efficient and reusable design, as well as clearly separates presentation logic (the client), business

logic (the session facade) and data logic (entity beans, and so on). The Velos eResearch

application uses the Session Facade to encapsulate the data logic.

• StateHolder pattern vs. multiple network calls. The client tier in an EJB system needs a way

to transfer bulk data to and from the server, the design issue being how should a client exchange

bulk data with the server without making multiple fine-grained network calls? When a large

amount of data needs to be exchanged, this can be achieved by loading many parameters into a

method call (while saving) or by making fine-grained calls/remote calls to the server to retrieve

data. The former option can quickly get out of hand when dealing with large amounts of

parameters and the latter can be a performance killer (executing multiple network calls, requiring

the serialization and de-serialization of return values, going through transaction and security

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

checks etc). The Velos eResearch application uses the Value Object / StateHolder design

patterns for exchanging data between various layers of the application. A value object is a

serializable Java class that encapsulates business data. To sum up, when the client tier sends

data to the EJB tier for processing, the client tier creates a value object to wrap all the necessary

information and sends the object to the EJB tier through a Session Façade interface. Likewise,

when the client tier receives data from the EJB tier, the EJB tier creates value objects to wrap all

information collected from the entity beans, and sends the objects to the client tier through a

Session Façade interface. Domain specific value objects are used in this application. A Value

Object can reduce network traffic by acting as a caching Proxy for a property of a remote object.

As a result, total load on the remote object's remote interface is decreased, because data

represented by the Value Object are cached on the client by the Value Object instance. All

accesses to the properties of Value Objects are local, and so those accesses cause no remote

method invocations. This decreases latency and improves user response time.

• Synchronous vs. asynchronous communication. Synchronous communication is extremely

useful when an operation produces a result in a reasonable amount of time. Asynchronous

communication is more complex to implement and manage but is useful for integrating high-

latency, unreliable or parallel operations. Most applications use a combination of synchronous

and asynchronous communication. For example, the Velos eResearch application processes a

study manipulation request synchronously and generates its complex milestones reports

asynchronously.

• Data Access Objects vs. embedding SQLs. Having data resource specific code in EJBs/JBs

makes a tight coupling between the application and the type of data resource. This can result in

an inflexible and difficult-to-maintain application. The design issue is to decouple the EJBs/JBs

from the data resource, thus making it easier to change data resource type, data access logic etc.

The Velos eResearch application uses the Data Access Object (DAO) pattern. This pattern

removes the data access specific logic from the EJBs and puts them in a separate interface. As a

result, the EJBs/JBs carry on with their business logic and use the Data Access Objects

whenever they need to read or modify (only when stored procedures need to be called) the data

they represent. This implementation does not couple the EJBs/JBs with their data resource. A

change of data resource / data access logic requires only a change in the Data Access Objects.

This pattern separates the business logic from the data access logic and makes the application

more flexible and maintainable. DAOs in the Velos eResearch application service requests:

o That may return large number or rows

o Need to execute a Stored Procedure or a database function

o Need to display Read-Only data

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

• Paged Data Browser display vs. extensive over-running rows of data. One of the design

issues in web-based applications is around presenting a large number of data rows to the user.

An application like Velos eResearch may need to display various data browsers/ search results to

the user. Barring having a design that displays large and unsophisticated pages with scrollbars,

the web client is only capable of presenting a subset of the comlete resultset at any one time and

the user may be interested in only a small subset of the entire data. Transmitting the entire

resultset as a list of objects to view would be extremely inefficient from the point of view of

network traffic and latency. The Velos eResearch application uses the Paged List/Paged Data

Browser pattern to present a paged, scrolling list of data to the user, while minimizing network

traffic, server load and latency. Instead of receiving the entire set of rows, the client code

accesses "data by page”, a sorted list of rows of a given length, starting at a given index. The

server-side implementation simply queries the database and returns the appropriate number of

items, starting in the appropriate place. The client receives information like total number of rows

returned by the query, total number of pages with information, additional pages to be fetched etc.

and can present a suitable GUI accordingly.

• Business Delegate vs. coupling. This pattern intervenes between a remote business object and

its client, adapting the business object's interface to a friendlier interface for the client. It

decouples the Web tier presentation logic from the EJB tier by providing a facade or proxy to the

EJB tier services. The delegate takes care of lower-level details, such as looking up remote

objects and handling remote exceptions, and may perform performance optimizations such as

caching data retrieved from remote objects to reduce the number of remote calls. The Velos

eResearch application has corresponding Java Beans for every session bean. The presentation

layer interacts with the Java Bean and is spared from tasks like looking up remote objects and

handling remote exceptions. This way the presentation layer is not coupled with the Enterprise

beans.

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

4. Modular Design (Low Level Design)

As mentioned above in the High Level Architecture, the application has an Application layer

(comprising of Controller classes and client Java Beans), a Service layer (comprising of Session

Beans), a Business layer (comprising of Entity Beans) and a Data Access Object (Java Beans)

corresponding to each table in the database. This set of layers is referred to as a set of beans. The

architecture is standard throughout the application therefore one set of beans has been selected as

a sample for further description. The choice of ‘Study Bean’ has been made for the obvious reason

that a study is central to the research process.

4.1. Study Bean Design

Description of the Study module has been broken into the following sections for the sake of simplicity

and understandability

• Table structure (Domain Layer)

• Presentation Layer

• Application Layer

• Service Layer

• Business layer

• Helper Classes

4.1.1. Table Structure

The study table consists of the following columns

Column name Description
PK_STUDY This column uniquely identifies a study. It is the

primary Key of the table

FK_ACCOUNT This column is for storing the id of the account to
which the study belongs This id used in case of
saving study data for external users. This is a
Foreign Key to the ER_ACCOUNT table

STUDY_PUBFLAG This column is for storing a flag that whether the
study should be released for public viewing. Possible
Values Y/N for yes / no

STUDY_TITLE This column is for storing the Title of the Study
STUDY_OBJ This column is for storing the Primary Objective of

the Study
STUDY_SUM This column is for storing a summary of the Study
STUDY_PRODNAME This column is for storing the name of the product

(in case the study is based on a product)
STUDY_SAMPLSIZE This column is for storing the sample size of the

study
STUDY_DUR This column is for storing the duration of the study

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

STUDY_DURUNIT This column is for storing the Duration Unit of the
Study. These units could be Day, Week, Month and Year

STUDY_ESTBEGINDT This column is for storing the Estimated Begin Date
of the Study

STUDY_ACTUALDT This column is for storing the Actual Begin Date of
the study

STUDY_PRINV Not in use
STUDY_PARTCNTR This column is for storing the list of Participating

Centers of the Study
STUDY_KEYWRDS This column is for storing the keywords identified

for this study. Keywords to be entered for search can
match any of the following fields: Phase, Therapeutic
Area, Name/Location of Sponsor, Name/Location of
Participating Centers, Name of Principal Investigator

STUDY_PUBCOLLST This column is for storing a comma separated list of
columns which the user flags for Public Viewing

STUDY_PARENTID This column will be used in case of Study Transfer
(For External Users). It will store the ID of the
original Study. Also, with the help of this column,
only the original studies (not the copied ones) will
be listed in Study Search results

FK_AUTHOR This column stores the author/data manager of the
study. Stores PK of er_user

FK_CODELST_TAREA This column is for storing the Therapeutic Area of
the Study. This is FK to table ER_CODELST

FK_CODELST_PHASE This column is for storing the Phase of the Study.
This is FK to table ER_CODELST

FK_CODELST_BLIND This column is for storing the Blinding option of the
Study. This is FK to table ER_CODELST

FK_CODELST_RANDOM This column is for storing the randomization option
of the Study

RID This column is used for the audit trail. The RID
uniquely identifies the row in the database

CREATOR This column stores the name of user inserting the row
in the table

STUDY_VER_NO This column stores the version number of the study
STUDY_CURRENT Not in use
LAST_MODIFIED_BY This column stores the name of user who last modified

the row in the table
LAST_MODIFIED_DATE This column stores the date on which the row was last

modified
CREATED_ON This column stores the date on which the row was

inserted
STUDY_NUMBER This is the number given to identify the study by the

user
FK_CODELST_RESTYPE This column stores the Research type e.g. applied,

basic, clinical. Stores PK of er_codelst with code
type 'research_type'

FK_CODELST_TYPE This column stores the Study type. Stores PK of
er_codelst with code type as 'study_type'

STUDY_INFO This column stores the information for the study
STUDY_SPONSOR This column stores the sponsors for the study
STUDY_CONTACT This column stores the contact persons for the study
IP_ADD This column is used for Audit Trail. Stores the IP

ADDRESS of the client machine
STUDY_VERPARENT This column stores the study id of the parent study

if this study is created as a result of 'create a
version' feature

FK_CODELST_CURRENCY This column stores the currency applicable through
out the study. Stores PK of sch_codelst with code
type 'currency'

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

4.1.2. Presentation Layer

The presentation layer consists of two parts – static and dynamic. The dynamic content is built using

the JSPs and the static one using HTML pages. The JSPs interact with only the Application Layer

to fetch any data from the database or application specific settings from the configuration files. For

details on this please refer to the ‘Various Operations’ part at the end of this section.

StudyStateKeeper
(from study)

������

Study

(from study)

������

StudyAgent

(from studyAgent)

� ���

StudyAgentHome

(from studyAgent)

�

StudyAgentBean

(from impl)

EntityBean

(from ejb)

SessionBean

(from ejb)

StudyDao
(from common)

StudyJB
(from study) �

EntityAdapter

(from common)

CommonDAO
(from common)

StudyPK
(from study)

StudyBean
(from impl)

UserStudiesStateKeeper
(from study)

� ���

StudyHome

(from study)

Figure 2: Classes at various layers

4.1.3. Application Layer

The application layer consists of Controller Classes or Client Java Beans. This class is called

StudyJB. It is located in the package com.velos.eres.web.study. It consists of the following:

• Variables – Each column has a corresponding variable defined in the study table (like id for

PK_STUDY, account for FK_ACCOUNT, StudySponsor for STUDY_SPONSOR and so on). This

is to ensure that this class is the client side representation of the study object residing at the

server/database. These variables are defined as private so that the user does not access these

variables directly but rather through the getter and setter methods. By convention, the ‘type’ for all

the variables is kept as ‘String’ except for the variable corresponding to the Primary Key of the

table (PK_STUDY) which is kept as ‘int’.

• Getter & Setter (Accessor) methods – A getter and a setter method is defined for every variable.

These methods are defined as ‘public’ and any change to the value of a variable can only be

JSPs

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

done using these methods. Like getId and setId methods for the variable ‘id’, getAccount and

setAccount for the variable ‘account’, and so on.

• Constructors – The constructors defined are –

o A blank constructor (default)

o A constructor that takes the primary key as an argument

o A full argument constructor taking all the variables as parameters

• GetStudyDetails – This method takes no argument, gets the values stored in the database

corresponding to the value of the primary key variable (id) and sets the variables of this class with

the values stored in the database. This method calls the getStudyDetails method of StudyAgent

(a Stateless Session Bean that facades the Study Entity Bean, both are described later in the

document) with primary key value as the parameter. It returns a StudyStateKeeper type object

containing all the values corresponding to the primary key. These values are then set to

StudyJB’s variables. Also the StudyStateKeeper object returned by the StudyAgent object is

returned by this method.

• SetStudyDetails – This method is used to add a row of data to the study table. It calls

setStudyDetails method of StudyAgent with the StudyStateKeeper as the parameter. The

StudyStateKeeper passed as the parameter is populated with the value of the variables before

being passed as a parameter. The setStudyDetails method of StudyAgent returns the primary key

value created for the row that has been inserted. This value is set to the primary key variable of

the StudyJB.

• UpdateStudy – This method is used to modify a row of data in the study table. It calls

updateStudy method of StudyAgent with the StudyStateKeeper as the parameter. The

StudyStateKeeper passed as the parameter is populated with the value of the variables that

needs to be modified before being passed as a parameter. The updateStudy method of

StudyAgent returns ‘0’ if the update is successful and ‘-2’ otherwise. This value is returned by

updateStudy of StudyJB.

• CreateStudyStateKeeper – This method returns a StudyStateKeeper type object populated with

the values of the variables of the StudyJB.

• Module specific methods – Apart from the above-mentioned methods there are some module

specific methods used for retrieving the data from the database (mostly Read-Only data).

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

4.1.4. Service Layer

The service layer consists of Stateless Session Beans. The classes are StudyAgent,

StudyAgentBean and StudyAgentHome.

• The StudyAgentHome is the Home Object of the Study Session Bean (StudyAgentBean). It is

located in the package com.velos.eres.service.studyAgent. It contains only one method - ‘create’.

This method, when called, returns a Remote Object to Study Session Bean (StudyAgent).

• The StudyAgent is the Remote Interface of the Study Session Bean (StudyAgentBean). It is

located in the package com.velos.eres.service.studyAgent. It contains the declaration of all the

methods contained in the StudyAgentBean. There is no implementation and every method throws

a RemoteException.

• The StudyAgentBean is the Study Session Bean. It is located in the package

com.velos.eres.service.studyAgent.impl. It consists of the following:

♦ Variable – A SessionContext type variable (ctx).

♦ SetSessionContext method

♦ EjbActivate method

♦ EjbPassivate method

♦ EjbCreate method

♦ EjbRemove method

♦ GetStudyDetails – This method takes an integer as parameter. This is the primary

key of the study for which the row is being requested from the database table. This

method first calls the findByPrimaryKey on the StudyHome class with the primary key

value as the parameter and then calls the getStudyStateKeeper method of the Study

class (the remote object of Entity Bean for the study table, described later in the

document). It returns a StudyStateKeeper type object containing all the values

corresponding to the primary key. This state keeper is then returned by this method.

♦ SetStudyDetails – This method is used to add a row of data in the study table. It

takes a StudyStateKeeper type object as a parameter. This object contains the values

that are required to be stored in the database. It calls create method of StudyHome

(Home object of Study Entity Bean described later in the document). SetStudyDetails

returns an integer, which is the primary key of the inserted row.

♦ UpdateStudy – This method is used to modify a row of data in the study table. This

method first calls the findByPrimaryKey on the StudyHome class with the primary key

value as the parameter and then calls updateStudy method of Study class (the remote

object of Entity Bean for the study table, described later in the document) with the

StudyStateKeeper as the parameter. The StudyStateKeeper passed as an argument

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

is the one received as a parameter by this method and contains the value of the

variables that needs to be modified. The updateStudy method of StudyAgent returns

‘0’ if the update is successful and ‘-2’ otherwise. This value is returned by this method.

♦ Module specific methods – Apart from the above-mentioned methods there are

some module specific methods used for retrieving the data from the database. These

methods use special classes called Data Access Objects to fetch Read - Only data

from the database. The data access logic is written in Data Access Objects specific

to every module.

4.1.5. Business layer

The Business layer consists of Entity Beans and the classes are Study, StudyBean and StudyHome.

• The StudyHome is the Home Object of the Study Entity Bean (StudyBean). It is located in the

package com.velos.eres.business.study. This contains the following methods:

o Create method – This method takes StudyStateKeeper as a parameter and returns a

Remote Object to Study Entity Bean (Study).

o FindByPrimaryKey method – This method is a finder method for searching a record on

the primary key value. It takes a StudyPK type object as a parameter and returns a

Remote Object to Study Entity Bean (Study).

o FindByUser method – This method is a finder method for searching for studies of a

particular user. It takes an integer (userId) as a parameter and returns an Enumeration

object containing all the studies of that user.

• The Study is the Remote Interface of the Study Entity Bean (StudyBean). It is located in the

package com.velos.eres.business.study. It contains the declaration of all the methods contained

in the StudyBean. There is no implementation and every method throws a RemoteException.

• The StudyBean is the Study Entity Bean that extends

com.velos.eres.business.common.EntityAdapter (the base class for Entity Beans). StudyBean is

located in the package com.velos.eres.business.study.impl. It consists of the following:

o Variables – A variable is defined corresponding to each column in the study table (like id

for PK_STUDY, account for FK_ACCOUNT, studySponsor for STUDY_SPONSOR and

so on). These variables are defined as public so that the container can access these

variables directly and is able to persist the data. By convention the ‘type’ of all the

variables is kept in accordance to the type of the column used to store that variable in the

database. For eg int for id, Integer for account, String for studySponsor, java.util.Date for

study Estimated begin date etc.

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

o Getter & Setter methods – A getter and a setter method is defined for every variable.

These methods are defined as ‘public’ and any change to the value of a variable by the

user can only be done using these methods. Like getId and setId methods for the

variable ‘id’, getAccount and setAccount for the variable ‘account’, and so on.

o EjbCreate method – This method takes StudyStateKeeper as an argument. It inserts a

row in the Study table using the setStudyStateKeeper method and returns a StudyPK

object that is the primary key value of the newly inserted row.

o GetStudyStateKeeper method – This method returns a StudyStateKeeper object with

the variables set with the values of the current variables.

o SetStudyStateKeeper method – This method takes a StudyStateKeeper as an argument

with the value of the variables set with the values that are to be set to the columns of the

new row. This method generates a primary key using the sequence object for the study

table and then sets the variables of the StudyBean class with this and the values in the

StudyStateKeeper.

o UpdateStudy method – This takes a StudyStateKeeper as an argument. This state

keeper object contains the values that are to be set instead of the old values. The values

are extracted from the state keeper and set to the variables of the Entity Bean. The

method return ‘0’ if the operation is successful and ‘-2’ if some exception occurs.

o Blank ejbPostCreate, ejbActivate, ejbLoad, ejbStore, ejbPassivate and ejbRemove

methods (inherited from EntityAdapter).

o SetEntityContext and unsetEntityContext methods.

4.1.6. Helper Classes

Apart from the Controller Classes, Service Layer and Business Layer, each module consists of the

following helper classes that are used/required by the above layers to perform their task easily and

effectively.

• StudyPK – This is a serializable class located in the package com.velos.eres.business.study and

is used by the Entity Bean. It consists of the following variables and methods:

o Variable ‘id’ – This is a public variable of type int and denotes the integer value of the

primary key column.

o Constructors – A blank constructor and a constructor that takes the primary key value as

a parameter in the form of an integer.

o ToString method – This method doesn’t take any parameter and returns a String that is

the primary key value contained in the class.

o Equals method – this method takes an object as a parameter. The method returns false if

the object is null or the object is not of the primary key class i.e. StudyPK. It returns true if

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

the object is of primary key class type and if all the variables of the class have the same

values as the object passed as a parameter to this function.

o Hashcode method – It returns the integer value of the primary key variable.

• StudyStateKeeper – This is a serializable class used to pass the variable values from one

method to another. It represents the StateHolder/Value-Object pattern used to transfer data

between various layers. It is located in the package com.velos.eres.business.study. It consists of

the following:

o Variables – A variable is defined corresponding to each column in the study table (like id

for PK_STUDY, account for FK_ACCOUNT, studySponsor for STUDY_SPONSOR and

so on). These variables are defined as private so that the user does not access these

variables directly but rather through the getter and setter methods. By convention the

‘type’ of all the variables is kept as ‘String’ except for the variable corresponding to the

Primary Key of the table (PK_STUDY) which is kept as ‘int’.

o Getter & Setter (Accessor) methods – A getter and a setter method is defined for every

variable. These methods are defined as ‘public’ and any change to the value of a variable

can only be done using these methods. Like getId and setId methods for the variable ‘id’,

getAccount and setAccount for the variable ‘account’, and so on.

o Constructors – A constructor that takes the primary key and the account id as an

argument.

o A full argument constructor taking all the variables as parameters.

o GetStudyStateKeeper method – This method returns a StudyStateKeeper object with the

variables set with values of this statekeeper.

o SetStudyStateKeeper method – This takes a StudyStateKeeper as an argument and sets

the values of the variables of this StateKeeper with the values of the StateKeeper passed

as the argument.

4.2. Deployment Descriptors

Deployment descriptors enable EJB containers to provide implicit middleware services to enterprise

bean components. An implicit middleware service is a service that beans can gain without coding to

any middleware API—the beans gain the services automatically. There are 2 deployment descriptor

files – ejb-jar.xml and jaws.xml – in each jar file.

• ejb-jar.xml – This file defines the various ejb objects used. All the beans (session and entity)

have an entry in this file. Thus there are 2 (one for session bean and one for entity bean) entries

in deployment descriptor of each module. Description of session bean is contained within the

elements <session> </session>. This defines the following –

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

o Name with which the session bean is deployed

o Name of the home object of this bean

o Name of the remote object of this bean

o Name of the EJB class

o Type of the session bean – stateless or stateful. In Velos eResearch only Stateless

Session beans are used.

Description of entity bean is contained within the elements <entity> </entity>. This defines the
following:

o Name with which the entity bean is deployed

o Name of the home object of this bean

o Name of the remote object of this bean

o Name of the EJB class

o Persistence type of the entity bean – container managed or bean managed. In Velos

eResearch only container-managed persistence is used.

o The primary key class of the bean

o Whether or not the bean is re-entrant. In Velos eResearch this is always False.

o An entry for each of the variables defined in the entity bean class corresponding to the

database column.

o Apart from the above there are transaction attributes defined in the deployment

descriptors. In Velos eResearch the transaction used is ‘required’.

• jaws.xml – Jaws.xml contains the following –

o Mappings between the java type, the JDBC type and the SQL type for various databases

o An entry specifying the table corresponding to the entity bean

o Entries specifying the operations allowed on the table

o An entry specifying the time-out time between the database and the entity bean

o Mappings between the table columns and the entity bean variables

o Entry for the finder method(s)

4.3. Jar files

There is a jar file corresponding to each set of beans (a set of bean consists of controller classes,

session bean and entity bean for a table). It is in .zip format and contains the following–

• The Java bean

• The session bean along with the home object and the remote object.

• The entity bean along with the home object and the remote object.

• The state keeper class

• The primary key class

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

• The CommonDao class

• The deployment descriptors

The jar file is located at the path <JBOSS_HOME>\jboss\deploy. Thus there as many jar files in

‘deploy’ folder as the number of tables in the database. These jar files are used to deploy the beans

on the application server. Apart from these jar files there is a ‘consolidated.jar’ in Velos eResearch.

This jar file contains the contents of all the jar files excluding the deployment descriptors. This jar file

is copied at the location <JBOSS_HOME>\jboss\lib\ext.

5. Main Modules

The architecture of all the modules in the application is the same as the study module (explained

earlier in the document). A more basic description of each module along with the interaction diagram

is given below. The interaction diagrams give a broad overview of JSP interaction with the Java

beans, session beans and entity beans (for the sake of simplicity and readability all method calls-

object interactions may not be included).

5.1. Creating an Account

The Velos Administrator manages the account creation module. The registration form is completed

by the researcher and submitted to the system. This creates an account for him. This account is

activated after verification of submitted information by Velos. After authentication, the login and

password information is emailed to the user and the account is activated.

register.jsp JB :
AccountWrapperJB

Session Bean :
AccountWrapperAgentBean

createAccount()

createAccount(com.velos.eres.business.accountWrapper.AccountWrapperStateKeeper)

Registration details

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.2. Login

The login module requires a user to sign on before accessing the Velos eResearch system. It

authenticates the user login/password and gives access rights on the basis of his account and group.

Session Bean :
UserAgentBean

ereslogin.jsp JB : UserJB User Home :
UserHome

User Entity Bean :
UserRObj

validateUser(java.lang.String, java.lang.String)

findValidUser(java.lang.String, java.lang.String)

validateUser(java.lang.String, java.lang.String)

getUserStateKeeper()

user validated

User login/password

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.3. Organization

Each account can have multiple organizations. The organization module documents the organization

information like name, type and address.

Site Home :
SiteHome

sitedetails.jsp JB : SiteJB Session Bean :
SiteAgentBean

Site Entity Bean :
SiteBean

setSiteDetails()

setSiteDetails(com.velos.eres.business.site.SiteStateKeeper)

create(com.velos.eres.business.site.SiteStateKeeper)

ejbCreate(com.velos.eres.business.site.SiteStateKeeper)

Site details

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.4. Group

Each account can have multiple groups. Users having common profile, rights or job type can form a

Group. Each group has its own set of access rights. The access rights defined for the groups are

applicable to all the users within the group. A user can belong to multiple groups. When the user logs

in, his default group governs his access rights for that session.

Entity Bean :
GroupBean

Group.jsp JB : GroupJB Session Bean :
GroupAgentBean

Group Home :
GroupHome

setGroupDetails()

setGroupDetails(com.velos.eres.business.group.GroupStateKeeper)

create(com.velos.eres.business.group.GroupStateKeeper)

ejbCreate(com.velos.eres.business.group.GroupStateKeeper)

Group details

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.5. User

The user module documents user information like name, address, time zone, job profile, login,

default group, etc. A sub module – ‘User Groups’ manages association of a user to multiple groups.

userdetails.jsp JB : UserJB Session Bean :
UserAgentBean

User Home :
UserHome

Entity Bean :
UserBean

setUserDetails()

setUserDetails(com.velos.eres.business.user.UserStateKeeper)

create(com.velos.eres.business.user.UserStateKeeper)

ejbCreate(com.velos.eres.business.user.UserStateKeeper)

User details

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.6. Personalize account

A user can customize his account in the following ways:
• Customizes his own homepage as well as the homepage of all account users (if he has rights) by

defining links.

• Subscribes to receive notifications for studies added in specificTherapeutic areas.

• Defines the automatic logout time for his session. The automatic logout feature protects the

privacy and security of account.

• Defines and edits the login name, password and e-signature and their expiry time.

jsp JB : ULinkJB JB : StudyNoti fyJBJB : UserJB

setULinkDetails()

setStudyNoti fyDetai ls()

updateUser()

Define user l inks

Subcribe for study noti fications

Set automatic logout time, change password/e-signature

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.7. Event Library

The Event Library is a list of events that are defined by the user and can be used and reused for

different protocols with minor or no modifications. The event module documents event information

like duration, fuzzy period, linked forms, notifications to be sent, associated cost, resources, CRFs,

users, etc.

eventdetaills.js
p

JB : EventdefJB Session Bean :
EventdefAgentBean

Event Home :
EventdefHome

Entity Bean :
EventdefBean

setEventdefDetails()

setEventdefDetails(com.velos.esch.business.eventdef.EventdefStateKeep
er)

create(com.velos.esch.business.eventdef.EventdefStateKeepe
r)

ejbCreate(com.velos.esch.business.eventdef.EventdefStateKeepe
r)

Event details

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.8. Protocol Calendar Library

The protocol calendar is a template that defines a hierarchy of events and their intervals. The

calendar clearly sets down the events that are to occur, the intervals at which they are to be

performed and associated criteria, such as forms to be completed for that event. This portion of the

protocol is essential for the actual execution of the trial.

The event library allows the user to easily select events (and to reuse the components for different

protocols) from a pre-established list of events. Events selected from the Library and included in the

protocol calendar are modifiable to suit the needs of that specific event. Once the calendar has been

created, it is available for selection from the protocol calendar library. This template can be used to

generate specific schedules for patients simply by selecting the protocol calendar that they are to be

associated to and assigning a start date.

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.9. Study

The study module includes information captured under various sub-modules such as

‘sections’,’team’, ‘calendars’, ‘appendix’, ‘status’ etc.

Study.jsp JB : StudyJB Session Bean :
StudyAgentBean

Study Home :
StudyHome

Entity Bean :
StudyBean

createStudyStateKeeper()

setStudyDetails(com.velos.eres.business.study.StudyStateKeeper)

create(com.velos.eres.business.study.StudyStateKeeper)

ejbCreate(com.velos.eres.business.study.StudyStateKeeper)

Study details

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.10. Patient

The patient module documents patient information such as demographics, registration details,

contact information, associated links, forms etc. Patient demographics information is secure and is

only accessible by users who have appropriate access rights.

Person Home :
PersonHome

patientdetails.js
p

JB : PersonJB Session Bean :
PersonAgentBean

Entity Bean :
PersonBean

createPersonStateKeeper()

setPersonDetails(com.velos.eres.business.person.PersonStateKeeper)

create(com.velos.eres.business.person.PersonStateKeeper)

ejbCreate(com.velos.eres.business.person.PersonStateKeeper)

Patient details

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.10.1. Patient Enrollment

Once the study is active and enrolling, patients can be enrolled and assigned to a specific protocol

calendar. A sub – module maintains the Patient Study Status History.

enrollpatientsearch
.jsp

DAO : PatientDao enrollpatient.jsp JB : PatProtJB Session Bean :
PatProtAgentBean

PatProt Home :
PatProtHome

Entity Bean :
PatProtBean

searchPatients(java.lang.String, java.lang.String, java.lang.String)

patient id

setPatProtDetails()

setPatProtDetails(com.velos.eres.business.patProt.PatProtStateKeeper)

create(com.velos.eres.business.patProt.PatProtStateKeeper)

ejbCreate(com.velos.eres.business.patProt.PatProtStateKeeper)

Search patient for entollment

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.10.2. Patient Schedule

Once a patient is enrolled to a study, a schedule can be generated using the calendar template

associated to him. The protocol calendar is translated into an accurate patient schedule. It lists the

events to be performed and their intervals, tracks the events that have been done, the forms

associated with the events, any cost or resource association etc.

patientschedule
.jsp

JB : EventdefJB Session Bean :
EventdefAgentBean

DAO :
EventdefDao

GenerateSchedule(int, int, java.sql.Date, int, int, java.lang.String, java.lang.String)

GenerateSchedule(int, int, java.sql.Date, int, int, java.lang.String, java.lang.String)

GenerateSchedule(int, int, java.sql.Date, int, int, java.lang.String, java.lang.String)

Select protocol calendar for schedule

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.11. Alerts and Notifications

Once a patient is enrolled and a schedule has been generated, many types of Alerts and

Notifications can be sent to the patient / user during study execution. The ‘Alerts and Notifications’

sub module allows the user to set these notification options for every patient:

5.11.1. Alerts
• Send alert when an event status changes to "Past Scheduled Date"

• Send alert if Serious Adverse Event is reported

• Send alert if Death is reported as Adverse Event outcome

5.11.2. Notifications
• Event Status Change specific Notifications

• CRF Status Change specific Notifications

5.11.3. Options
• Do not send any pre-defined event notifications to this patient

• Do not send any pre-defined event notifications to users (for this patient)

When the above-mentioned Notification options have been defined, notification messages are sent

as and when these events occur.

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

Another sub module ‘Global Alerts and Notifications’ allows the user to set these options for all

calendars of a study. This module also gives options such that user can make these settings

available for every patient currently enrolled to the study / every patient who will be enrolled in future

/ revoke the settings for all / revoke for future enrollments.

5.11.4. Adverse Events

The ‘Adverse Event’ sub-module records the ‘Adverse Events’ that may occur when a patient is

enrolled to a study. Details like Adverse Event Type, Start – End Dates, Outcomes, etc are captured.

Once the outcomes are recorded, ‘Adverse Events’ related Notifications are processed according to

the patient’s or the study’s ‘Alerts and Notifications’ settings.

advevent.jsp JB : AdvEveJB Session Bean :
AdvEveAgentBean

Home :
AdvEveHome

Entity Bean :
AdvEveBean

setAdvEveDetails()

setAdvEveDetails(com.velos.esch.business.advEve.AdvEveStateKeeper)

create(com.velos.esch.business.advEve.AdvEveStateKeeper)

ejbCreate(com.velos.esch.business.advEve.AdvEveStateKeeper)

Adverse Event details

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.12. Patient CRFs and Other Forms

The patient CRF sub module captures CRF related data for each event, such as its status,

Review/Approval and Tracking information. If CRF status / or tracking related Notifications have

been defined, this information triggers the processing of those Notifications.

crfstatus.jsp JB : CrfJB Session Bean :
CrfAgentBean

CRF Home :
CrfHome

Entity Bean :
CrfBean

setCrfDetails()

setCrfDetails(com.velos.esch.business.crf.CrfStateKeeper)

create(com.velos.esch.business.crf.CrfStateKeeper)

ejbCreate(com.velos.esch.business.crf.CrfStateKeeper)

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.13. Budget

The Budget module allows designing and sharing of budget related information. The budget is

essential for getting approval for conducting a study, for agreeing on the amounts to be paid and for

subsequent billing and cost management of the trial. A Budget can be a ‘patient’ or a ‘study’ budget.

It is composed of sub - modules ‘Sections’ and ‘Line Items’. Links and files can be associated with

the budget. Access Rights for the budget can be defined at account level, organization level, study

team level or explicitly for the user.

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.14. Milestones

Milestones are major targets within the study that need to be tracked on the basis of their

achievement. Milestones can be defined for each study. Notifications are sent when a milestone is

achieved (The Milestone Notifications sub module documents the Notification information). Links and

files can be associated with Milestones.

milestone.jsp JB :
MilestoneJB

Session Bean :
MilestoneAgentBean

Home :
MilestoneHome

Entity Bean :
MilestoneBean

setMilestoneDetails()

setMilestoneDetails(com.velos.eres.business.milestone.MilestoneStateKeeper)

create(com.velos.eres.business.milestone.MilestoneStateKeeper)

ejbCreate(com.velos.eres.business.milestone.MilestoneStateKeeper)

Define patient, visit, event milestones

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

5.15. Reports

Velos eResearch has the powerful ability to aggregate and analyze data that the user has entered

into the system and present it in the form of user-friendly reports. These reports can be account

related (aggregating and analyzing data across all account users), study related (access controlled

analysis of study specific data), patient related or milestones related.

5.15.1. Reports Design

The reports module is composed of several components that work together to create the foundation

of the system’s reporting capability. These components are:

• Report Sql in database

• Layout Template as XSL in database

• Data Generation in XML

• Report Header/Footer in database

• XSLT Processor - Xalan

Figure 3 below is a diagrammatic representation of the reports architecture.

Figure 3: Reports Architecture

The SQL for generating a report is stored in the database. Data is generated by executing SQLs and

stored procedures. The generated data is converted into XML. Report layouts are defined in XSL

files, also stored in the database. The XML and XSL for each report is fetched from the database

and transformed to HTML format using the XSLT Processor – Xalan.

Header and Footer – The header and footer of the reports are also stored in the database. This

provides an easy option for customizing headers/footers for reports for specific reports or account.

eResearch DB

XALAN
Processor

Report
HTML output

XML
Generation

XML

XSL

Header/Footer

HTML

SQL

SQL

Header/Footer

X
S
L

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

Saving reports in other formats – This module provides an easy way to download the reports in

Word, Excel or HTML Format. The user can then customize the report to suit his needs by inserting

titles, formatting the text, applying filters, creating charts and graphs or any other feature of the

application to which the data is downloaded.

The figure below depicts the interaction diagram of report JSP and its beans.

repmain.jsp accrepfilter/patrepfilte
r/studyrepfilter.jsp

repRetrieve.jsp JB :
ReportJBNew

Select Report

Select Filter Criteria

getRepXml(int, int, java.lang.String)

getRepXsl(int)

Transformation using Xalan

Report HTML

5.15.2. Advantage

The report presentation and the data are two separate entities. This has the advantage of being able

to change the report layout at any point of time without affecting other areas.

5.15.3. Reports available in Velos eResearch

• All Account Users

• Patient Events (Done)

• Patient Events (To Be Done)

• All Patients Event List

• Patient Schedule

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

• Summary for Public Broadcast

• Estimated Study Budget

• All Patients Enrolled to a Study

• Active Protocols

• User Profile

• Study Team

• Protocols by User

• Protocols By Therapeutic Area

• Public Protocols

• Protocol Tracking

• Protocols by Organization

• Complete Protocol

• Assigned External Users

• Protocol Calendar Template

• Patients Associated Cost

• Account Report (Detailed)

• Account Report (Summary)

• Patient CRF Tracking

• All Patients Associated Cost

• Patient Event/CRF Status

• Milestones Summary (All Patients)

• Milestones Summary (Patient)

• Milestones by Month

• Milestones by Quarter

• Milestones by Year

• Payments Received by Month

• Milestones Summary (Study)

• Payments Received by Quarter

• Payments Received by Year

• Milestones/Payment Discrepancy by Month

• Milestones/Payment Discrepancy by Quarter

• Milestones/Payment Discrepancy by Year

• Account Report (Detailed)

• Account Report (Summary)

• Audit Trail reports

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

6. Security in Velos eResearch

Apart from using 128-encryption to protect sensitive information online, Velos eResearch also has

application level security. Each user has a set of rights for accessing different modules. The various

levels at which application rights can be defined are:

• Account level security – Velos administrator reserves the rights for granting access permission

to an account for these modules:

o Enhanced Patient Tracking

o Budgeting

o Milestones

These rights are applicable to all users within the account. The modules are either enabled/disabled

and are made visible/invisible in the left menu panel according to the rights of the logged in user.

• Login security – The user login name and password are authenticated and verified at the time of

login. When the user logins, he will be given access rights according to his default group’s access

rights (explained below).

•

• Modular security – The Account administrator can provide ‘New’, ‘Edit’ and ‘View’ rights for

different modules. A user with ‘New’ right has the permission to add/create information in the

system. A user with ‘Edit’ right cannot create but can modify the already entered data. A user with

‘View’ permission can only view the data.

•

• Group level security –Group administrators can define ‘New’, ‘Edit’ and ‘View’ rights for each

module. All users within a group have the same set of rights. The modules for which rights can be

defined are:

o Study Protocol

o Manage Groups

o Manage Users

o Assign Users to Group

o Manage Group Rights

o Manage Organizations

o Manage Account Specific Links

o Protocol Library

o Reports

o Manage Patients

o Budgeting

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

• Study level security – Study data managers can define ‘New’, ‘Edit’ and ‘View’ rights for

accessing study details. Each study team member has his own set of rights for accessing the

study. External account users as well as internal account users can be provided with a modifiable

or viewable copy of protocol. Access rights can be defined for:

o Study Status

o Study Team

o Associate External Users

o Study Summary

o Study Sections

o Appendix

o Study Notifications

o Manage Patients

o Edit / View Complete Patient Data

o Protocol Calendar

o View Study Reports

o Milestones

o Create a Version

• Budget level security - The ‘creator’ of a budget can define access rights for accessing details

about the budget and appendix. Budget rights can be defined at four levels:

o all users of the account – if budget rights are defined for an account, they are applicable

to all the users within that account

o all users of the organization – if budget rights are defined for an organization, they are

applicable to all the users within that organization

o all users within the study team – if budget rights are defined for a study team, they are

applicable to all study team members of the specified study

o individual user – if budget rights are defined for an individual user, these rights supercede

rights defined at account/organization or study team level

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

7. The Velos eResearch Mailer

The "eResearch mailer” is a mailing service that runs in addition to the application servers. The

Velos eResearch system provides various alerts and notification services. Some of the notifications

that a user can configure from various modules of the application are:

• Patient's Event status change

• Patient's Event Schedule

• "Past Scheduled Date" - when an event passes its scheduled date and is not yet processed

• Patient's CRF/Other Forms Tracking ̀

• Patient's CRF/Other Forms status Change

• Milestone Achievement

• Alerts for Adverse Events

• Milestone reports' completion

These notifications can be received as:

• Information specific individual mail

• Clubbed Notification - one single mail comprising of different types of messages

• Small message for pager/cell devices

•

7.1. How it works

• Mail messages are created when:

o A particular type of information is saved and messages related to it are generated (using

triggers) and inserted in the table sch_dispatchmsg (user sch) immediately.

Notifications related to Adverse Events (serious adverse event, 'death' as outcome),

Event Status change, CRF status change, CRF tracking (when message is to be sent on

same date), Milestone Report Generation etc. fall in this category.

o A patient's schedule is generated and the pre-defined event based messages (for patient

as well as user) are generated and dumped in sch_msgtran (user sch). These

messages can be post dated too but the mailer sends them on their respective scheduled

dates.

o The database job for executing SP_GENCLUBMAIL (from package PKG_CLUB , user

sch) is run. This procedure:

�� Executes the procedures for CRF Tracking, Past Scheduled Date and Milestone

Achievement Notification procedures. These procedures work according to

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

existing data as well as user's settings for alerts and notifications. The generated

messages are inserted in the table sch_msgtran.

�� The next step clubs all such messages for a user and date combination and

transfers the information to the table sch_dispatchmsg

• Table sch_msgtext stores the message templates used for the above mentioned notifications

• The mailer is activated at an interval of 1 minute and ‘looks’ for pending mail messages in the

table sch_dispatchmsg, creates the mail message and sends it to the intended recipient.

• The mailer works according to Timezones. It uses the Timezone information specified for users

and patients. E.g. if the mail service is running in Fremont, and the mail recipient is in Japan, in

this case the mail is sent according to Japan Timezone and not Pacific Standard Time.

• The "eResearch mailer" should run without interruptions to send notifications in a timely manner.

7.2. Setting up the eResearch mailer

eresMailer.ini - eresMailer.ini stores configuration for the following:

• Database connection information

• SMTP host

Figure 4: Velos eResearch mailer at work

Sch_msgtran
 Sch_dispatchmsg

Database

Data Entry in
various

modules –
Database
Triggers

Generate
Patient

Schedule

PKG_CLUB.SP_GENCLUBMAIL()

Create
Messages

Create
Messages

Create
Messages

JSPs

EResearch
Mailer Apache

Tomcat

JBoss

Send Mail

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

8. Audit Trail in Velos eResearch

The Audit Trail is an important security component of the Velos eResearch application. The module

keeps a record of users accessing the system and operations performed by them during a given

period of time. It enables the Velos administrator to track all user movements and updates

throughout the Velos eResearch application. The audit trail includes:

• Records that the transaction has occurred

• Tracking Insert operation

• Tracking Update operation with record of OLD and NEW values

• Tracking Delete operation

8.1. Design

Each table that has to be audited has six columns. These columns are:
• RID - The Row id uniquely identifies the row in the database. This is populated from a sequence

and is unique throughout the database.

• CREATOR - The id of the user who created the record in the Velos eResearch system.

• LAST_MODIFIED_BY - The id of the user who last modified the row in the table.

• LAST_MODIFIED_DATE - Date and time of record modification.

• CREATED_ON - Date and time of record creation.

• IP_ADD - Stores the IP address of the client machine.

8.2. Tables

• AUDIT_ROW - Stores the table, action, date-time, user and row id of the row on which the

operation is being done.

• AUDIT_COLUMN - Stores the information about the column with its old and new values and has

a reference to the AUDIT_ROW table through the Record Id of the modified row.

• AUDIT_DELETE - Stores the complete information along with the values of the deleted records.

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

The values of the deleted row are concatenated and stored as one string. Blob columns are not

stored.

8.3. Triggers

The following triggers are created for each table:
• Before insert Trigger to record the insertion of a new row. It records the event in AUDIT_ROW

table.

• After update Trigger is designed to record the update in the column values of a row. This trigger

first inserts a record in AUDIT_ROW table with the Record Id of the updated row and then writes

the old and new values of the updated columns in AUDIT_COLUMN table.

• After delete Trigger is designed to record the deletion of a row. This trigger first records the

event in AUDIT_ROW table and then writes the concatenated values of the row in

AUDIT_DELETE table.

8.4. Package and Stored Procedures

AUDIT_TRAIL - This package has two stored procedures in it. The triggers use these procedures for

recording the transactions and updates.

• RECORD_TRANSCATION - Inserts a record to AUDIT_ROW table to mark a transaction -can be

a delete, insert or an update.

• COLUMN_UPDATE - Inserts record(s) in AUDIT_COLUMN table for each modified column.

Two Sequences

• SEQ_RID - this sequence is used to get the value of RID column in the Audited table(s). A new

value is extracted from the sequence every time a record is inserted in any of the audited tables.

• SEQ_AUDIT - this sequence generates unique transaction numbers.

8.5. How The Audit Trail Works

This approach is based on the use of triggers for automatic recording of change in records.

• When a new record is inserted in the audited table, the BEFORE_INSERT trigger updates 4

columns in the table. The other columns are updated from the application. An entry goes to the

AUDIT_ROW table.

• Whenever a modification is made to the record, an entry is added to the AUDIT_ROW and

AUDIT_COLUMN tables. In the AUDIT_ROW table, one record is inserted per transaction while

in the AUDIT_COLUMN table, a record is inserted for each modified column per transaction.

Velos eResearch Application Design

Velos Inc. 2201 Walnut Av., Suite 208, Fremont, CA 94538 P (510) 739 4010 F (510) 739 4018 W www.velos.com

• When a record is deleted from the audited table, a record is inserted in AUDIT_ROW to indicate

the deletion of record, and another record is added to AUDIT_DELETE table where the complete

deleted record is stored as PIPE separated values.

8.6. Audit Reports

Audit reports can be viewed on the basis of:

• Dates

• Action and Dates

• Action, User and Dates

• User and Dates

The stored procedure SP_AUDREP generates an XML from SQLs for the Audit module. The SQLs

are stored in the AUDIT_REP.AUD_SQL column. The respective XSL for the report is fetched from

the database. XSLT processor – Xalan transforms the XML and XSL to HTML and generates the

audit report.

